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Abstract

We study nonlinear effects including possible modulational instability of an intense
electromagnetic pulse propagating through a fully-ionized, unmagnetized plasma. (The
pulse is assumed to be strong enough to accelerate particles to weakly, but not fully,
relativistic velocities.) LThe envelope is shown to evolve over long time scales in general
according to a vector form of the well-known cubic nonlinear Schroedinger (NLS) equation.
Three distinct nonlinear effects contribute terms cubic in the amplitude and thus can be of
comparable magnitude: ponderomotive forces, relativistic corrections, and harmonic gen-
eration. In contrast to previous work, our calculation takes all three effects into account.
Integrability and modulational stability of any given system are shown to depend on polar-
ization, frequency, composition, and temperature, and these dependences are given. Finite
temperature effects are considered for completeness; they are qualitatively important only
near a critical frequency (< 3/2 wp) just above the plasma frequency for which the group
velocity is comparable to either (or both) of the sound velocities. In the special case of a
cold positron-electron plasma - contrary to the predictions of Chian and Kennel [I] - the
model is strictly modulationally stable for both linear and circular polarization; The results
have important implications for pulsar micropulse observations and possible technological
applications.

i I I I | i 1



The propagation of a relativistically-strong, modulated electromagnetic pulse in a
plasma is more complicated than appears at first glance. In the case of uniform propagation
(i.e., no modulation), some exact solutions (for circular polarization) are indeed known [2)
which are described by a nonlinear dispersion relation. Chian and Kennel [1] pointed
out the possible application to pulsar micropulses and obtained a scalar NLS equation
by applying the method of Karpman and Krushkal [6] (which is based on the Whitham
averaging method [7] ) to this dispersion relation. The problem was again considered
by Mofiz and collaborators [3-5] Unfortunately, the resulting NLS coefficients in these
papers are incorrect, and the force equations in [1] are violated at leading order. (The
necessity of paying special attention to the longitudinal force equations was noticed in [3].)
The problem evidently contains subtleties and requires the careful application of singular
perturbation methods.

The scalar NLS equation is given in standard dimensionless form by

3- -@q±2q 2  (1)

The upper sign corresponds to modulational instability. As we shall see, the propagation
of the envelope of an electromagnetic pulse in an unmagnetized, neutral, two-component
plasma in the weakly nonlinear case is governed in general, not by (1), but by a vector
form of the NLS equation. By weakly nonlinear we mean that the transverse electric field
accelerates one or (possibly) both components to weakly relativistic velocities within one
cycle, that is, e , (2)

mecU

In the general case, two NLS amplitudes will be present, corresponding to the two po-
larization states. However, these polarization states will be coupled by the nonlinearity.
Consider a system of the form

iOrql + DO, q1 + qi(Ciqq + C 2q2 q2) = 0 (3a)

i8,q2 + Da 2q2 + q2 (Clq2q2 + C2 qiq' ) = 0 (3b)

In the special case where C1 and C2 are equal (or can be transformed into this form), the
equations are known to be integrable [8]. However, in general, the vector NLS equation
will be nonintegrable.

The purpose of this paper is to present an accurate evaluation of the leading non-
linear coefficients, because they are crucial in determining the qualitative behavior of the
envelope, in particular whether or not modulational stability and soliton type solutions
will occur. The reasons for performing this calculation are several fold. For example, with
the advent of current technological capabilities, one could be interested in how nonlinear
effects will couple different polarizations, particularly if one intends to have each polar-
ization mode carry different bits of information. Also, intense signals in a rarified plasma
could have critical information scrambled by the nonlinear effects. It may even be possible
to test our theory in astrophysical systems, in particular by observing pulsar micropulses.
This point will be discussed by us in a separate paper [9].
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In any singular perturbation method, one seeks uniformly valid asymptotic expansions
[10] with respect to a small parameter, which we will call e (in this problem e is related
to the typical amplitude of the vector potential). Here, the domain of uniform validity is
of order 1/e cycles in space and 1/c 2 cycles in time. The singular perturbation method
which we will apply, known as the method of multiple time scales, has been described in
several textbooks (see for example Van Dyke [11] or Nayfeh [121) and has been applied to a
wide variety of problems. Since we are interested in the evolution of a pulse with arbitrary
modulation, it will not be possible to assume dependence on only a single independent
variable (although it is possible to verify consistency of our results for particular cases
with the work of Kozlov, et. al. [13], in which fully nonlinear solutions depending on
one independent variable were found). Instead, we allow the functions in this problem to
depend, not only on a "fast" (phase) variable, but also on "slow" time and space variables.
These will be chosen to make the effects of nonlinearity enter the calculation at the same
order as the effects of linear spreading of the wave packet.

Consider an envelope of length L of waves with wavelength near A. If f --II
then nonlinear effects will typically act on a timescale To = A/(e2c) comparable to the
timescale for the spreading of packet due to linear dispersion. By routine dimensional
analysis it is possible to see that ponderomotive forces, relativistic corrections, and har-
monic generation might have comparable effects on this timescale. Our calculation shows
that, in general, all three effects indeed play a role.

The ponderomotive force depends quadratically on the amplitude and leads to a slowly
varying longitudinal field, corresponding physically to radiation pressure, which leads to
slow longitudinal motions and modifies the background density. At cubic order, the modi-
fication of the background couples back to the fundamental. This contribution dominates
at the longest wavelengths (c2 k2 < w2). (In fact, for finite temperature, there is a sin-
gularity at a critical frequency just above the plasma frequency.) At shorter wavelengths
(c 2k 2 Z w2), the other two contributions dominate in an electron-positive ion plasma,
while all three effects are important in an electron-positron plasma. Independently of the
composition, temperature, or frequency, the effects of harmonic generation are identically
zero for circular polarization - but in general only for circular polarization.

Chian and Kennel [1) first propsed that modulational instabilities in an electron-
positron plasma would reshape pulsar micropulse signals. Unfortunately, they omitted
two "parametric" sources of nonlinearity (harmonic generation and ponderomotive effects)
and also obtained an incorrect value for the linear dispersion coefficient of the NLS. As we
shall see, the special case of an electron-positron plasma exhibits several peculiarities, such
as accidental (near) cancellations in certain limits. One can obtain the correct nonlinear
coefficient only by considering all three sources of nonlinearity right from the beginning.
When all terms are included, we find that, at least in the nonrelativistic limit (their Eq.
(10)), their claims concerning modulational instability are reversed - both for linear and
for circular polarization. A cold positron-electron plasma is modulationally stable for both
circular and linear polarization. However, if ions are present, modulational instability is
possible, as we shall see. Implications for pulsar signals will be briefly discussed below.

Our model comprises a neutral, fully-ionized plasma, consisting of singularly-ionized
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atoms (of charge +e and mass M) and electrons (of charge -e and mass m); the plasma
is modeled as a fluid with constant but distinct electron and ion temperatures (possibly
zero). The fluid is characterized by the electron density n, the electron velocity t7, the ion
density N and the ion velocity V. (Although we will refer to the positive component as
"the ions," our model of course also describes a positron-electron plasma if m = M.) The
plasma is further characterized by a vector potential A and an electrostatic potential 0.
The functions n, v" N, V, A, and 0 are assumed to depend on t and z, but not on x and y.
It is convenient to write the continuity and Euler equations for the electrons in the form

atn + V. (nv-) =0 (4a)

d(mU- e . V) e=,€ ± e. =vfVAj - mcV Inn = 0 (4b)
C c

where c, is the electron speed of sound, m is the electron mass, and

d =, + 6. V (4c)

-Y = (1 - v2/c 2 ) - 1/2  (4a2)

For the ions, the respective equations are

atN + V. (NV) = 0 (5a)

D(MFv + _V) + eV - -F1=iV,'VAe- MC V lnN = 0 (5b)
c c

where C, is the ion speed of sound, M is the ion mass, and

D = D, + V *V (5c)

r = (1 - V 2 /c 2) -1 2  (5d)

Here, the electron speed of sound c, is assumed constant and is related to the temperature
Te by c2, = 7yTe/m, and similarly for the ions.

Of course Maxwell's equations must hold:

4ffe = - 1 -t

'xD= (n-N)+8c (6a)

V.E- 4re(N - n) (6b)

with

B=V x A (6c)
-- 1

E =-VO - -aA (6d)
C
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and where we impose the radiation gauge

V.A=O (6e)

This is a nonlinear system of equations is to be solved for the evolution of some initial
data given on the interval -oo < z < oo for the functions (n, i', N, V , A, 0), satisfying
the usual initial-value constraints. (The constraints will be satisfied automatically at latcr
times). We are interested in a particular class of solutions, namely those which correspond
to the physical idea of a slowly modulated, weak, nearly sinusoidal disturbance about a
uniform quiescent medium (which is an obvious exact solution of Eqs (4-6)). We assume
that well-posed initial data can be given which evolve in this way.

To make these assumptions precise, consider first the electron density and the vector
potential, which are assumed to have asymptotic expansions of the form

n = no + en, + c2 n 2 + 633 +... (7a)

A = eA± fA 2 + f 3+.. (7b)

with respect to the positive dimensionless parameter e < 1, where the first term no in (7a)
is a constant. Since the velocities will also scale with e, it is evident that for sufficiently
small E the motion is only weakly relativistic and thus we will be able to expand the
relativistic factors -y and F about unity.

Similarly, the other variables are expanded as follows:

N = no + N1 + E2 N2 + E3N 3 +... (7c)
= + C + 3 +... (7d)

S + C+ E(7e)

= -- 1 "+ C202 + f303 +-'. (7f)

Note that no = const, No = no, and all other zeroth-order quantities vanish. (Except
where otherwise stated, numerical subscripts indicate the formal order in C.)

Now, it is routine to work out the linearized solutions of (4)-(6) corresponding to a
sum over Fourier components of transverse electromagnetic EM waves. (By "linearized"
solutions, we mean solutions obtained by simply truncating (4)-(6) at order C.) A typical
Fourier component of the vector potential perturbation behaves in this linearized theory
like a(w)ei(kz- wl), where k and w are related by a dispersion relation to be given below.
Here we are interested in the nonlinear theory in which different Fourier components are
coupled. In order to study the evolution of a slowly modulated beam, we assume that the
first-order perturbation of the vector potential takes the form

= + c.c. (8)

where "c.c." means the complex conjugate, k is the wave number, w is the frequency. The
functions a, and a, (where the subscripts here refer to the component) are not strictly
constant, but depend on the slow variables

Z =ez, T=et, r=e 2t (9)
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With the introduction of slow coordinates, we employ the following standard procedure:
We collect terms in all equations according to their formal order of magnitude. ("Order"
always means with respect to e.) We then solve order by order. Evcry derivative of a slowly
varying function is down by one or two orders. For this reason, the transverse equations
at leading order are the same as those of the truncated linearized theory. (Not so for the
longitudinal equations, as we shall shortly see.) Slow derivatives of the lower-order terms
will appear at higher orders. According to standard singular-perturbation procedure [12],
we seek solutions of the higher-order equations which satisfy the requirement of uniform
validity, not only over a cycle, but also over the slow scales. (In general, not all of the
higher-order equations need to be solved explicitly, but instead provide integrability con-
ditions which affect the lower orders.) In this way, the evolution of the slowly varying
functions will be determined.

With this strategy in mind, we now solve the first-order equations. The longitudinal
components are identically zero or can be chosen to vanish without loss of generality. The
transverse components can be treated as a coupled linear homogeneous system of the form

L(;)-= 0 .(10)

At this order, we choose the EM mode to dominate and take the solution to be of the form

1 -A, (Ila)
mc

- e- IT,(llb)
Mc

01 0 = N1 = A,. = vj. = V1. (11c)

Note that the velocities and the vector potential are purely transverse in first order. The
first-order part of (6b) guarantees quasineutrality at first order. The z-component of (6a)
is then satisfied at first order automatically.

The dispersion relation is
w2= W 2 + c2k2  (12)

P

where

W2= 4 2no(-+ - ) (13)

The slow dependence of 5 is of course as yet undetermined

As we have seen, the longitudinal components of the velocities vanish in first order.
However, for a system with slowly modulated waves, the third-order part of the longitudinal
component of the force equations (4b) and (5b) leads to a nonvanishing, slowly varying
longitudinal component of the velocities at second order. This happens even in a positron-
electron plasma, despite the fact that the third-order longitudinal electric field (second-
order electrostatic potential) vanishes. Note that in Ref. [1], the longitudinal component
of the force equations (their Eq. (5)) is violated in leading order.
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At second order there are three possible types of terms with different phase depen-
dence, which we will discuss in turn. Decomposing the second-order electron density n2
asi2 ) + [n(I)ei(k ") + C.C.] + [ (2)e2i(kz-wi) + C.C. , (14)

we note that the first term n2(0) corresponds to a second-order correction to the back-
ground density. A similar decomposition will be made for the other variables. From here
on superscripts (0), (1), (2), etc. refer to coefficients of terms with corresponding phase

dependence. Terms such as n °) will be refered to as "DC" terms. Terms such as n 2
correspond to a correction to the fundamental. Terms such as n(2 ) currespond to the har-
monic, which in general arises due to nonlinearity, although in specific cases it may vanish
identically.

At all orders p > 1, the fundamental mode is described by an inhomogeneous system
of the general form

where L is the linear operator of Eq. (10), and where Np is a (possibly) nonlinear functional

of the lower-order terms. If one defines the scalar product

(f~g =. dO f g (16)

of two functions f and g over a cycle, then Np must be orthogonal (with respect to (16)) to
the general homogeneous solution OH of (10). Otherwise, secular terms, e.g., terms of the
form Oe' 6 (0 - kx - wt), would arise. Secu!ar tex-ms would obviously violate the uniformity
condition stated above, because the pth order would eventually become comparable in size
to the terms of order p - 1. At second order, this requirement implies simply

(OT + Vgaz) 6 = 0 (17)

where
dw c2 k (18)v9 = dl.

Note that Eq. (17) is the same as the group velocity condition for a wave packet in
the truncated linear theory. (Nonlinearites will play a role in the fundamental at third
order.) Now that the secular terms in the fundamental mode have been removed, then the
solution for the secrr'd-order fundamental can be taken to vanish without loss of generality
(a nonvanishing contribution could always be absorbed .-,t:) f't sr±'- ) Thus

n l)= = ( 10) = 0
2 V2 2

Now for the second order DC terms. These are obtained by solving z-components of
the Euler equations (4b) and (5b) in third order together with the continuity equations
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(4a) and (5a) at second order.

- Mmc2v~a .5 (20a)

V2) =V2o =i' ,,.. /no (20b)
-, 0 (20c)

2. (20d)

Note that in all cases the plasma acquires a longitudinal component of the velocity in

the z-direction, even though 02) vanishes for an electron-positron plasma. Except for the
electron-positron case, the DC electric field will induce charge separation over the slow
space scales at 0(c4 ).

The nonlinear terms in the Euler equations (4b) and (5b) also induce harmonic terms
in the solution:

(2) =  noe 2 k 2(5,i) (4w2  W7 (2 )
=2rn w~c2 (4w2  - w ) m .Xij

2) ro 2 k2 (. 6) (4 2 2)'n2 - ( ) - m}(21ba)2m W2 C2(4,, 2 - W2) M

(2)
,42) Wfl 2V2  kno (21c)

S_ (2)  

(- 

(2)

kno (21d)

= 2c2 (4w2  w ) (21)I2 2-

A2 0 (21f)

Evidently from Eqs. (21), circular polarization (vanishing 5. d) is a special case (for any
mass rati,), because harmonic generation is absent. In this case, charge quasi-neutrality is
maintained at second order. However, in general the second-order density perturbations of
electrons and ions are not equal: charge separation over the fast scales is already present
at second order!

The electron-positron case is again specia! because the i-aritionic, secc.-: -rder poten-
tial perturbation is zero. Otherwise, a second-order electric field varying as the harmonic
will be present in general (except for circular polarization).

We now proceed to third order. It is now possible to derive the evolution of the slow
functions (d, etc.) as a consequence of the requirement that the third-order equations
contain no secular terms, as explained above. Since DC and harmonic terms are of course
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orthogonal to the operator L of Eq. (15), it sufflcies to consider the fundamental. As at
second order, one can absorb the perturbations in the fundamental mode of the third-order

electron density n ), ion density N(1) and potentials 0('), A() into the first-order terms
without loss of generality. Thus,

(=lN) = ==0, N1 =n0  (22a)

However, t'Ae: - remains a third-order perturbation of the velocities of the form which comes
from th, relativistic corrections

V3  m 3 [26(a- ) + 5*(5. d)] (22b)

_ +e [25(. 5) + -(. 6)] (22c)
2M 3c5

The secular condition then becomes
2 a2- 2 - 6(n:/no)

-2- n22'+ N~22__W L -ino Mno L + (23)

+2 2 + I

[26(a- 6) + a6(6. -)]= 0

The origin of the various terms in (23) is evident. The first two terms would be present
even in the linearized system obtained by simple truncation of Eqs. (4-6); they represent

(0)the effects of linear dispersion. The term containing n2 arises because the ponderomotive
force induces perturbations of the "background" density on the slow scales, as discussed

above. The terms containing n 2 ) and N 2 ) arise from harmonic generation. Finally, the
last term comes from relativistic momentum corrections contained in the factors of -y and
F of Eqs. (4) and (5).

Taking into account Eqs. (17), (18), (20), and (22), we can rewrite (23) in the form

W2C2

2iwrd + -a-".6 + a(d' - )(CH + CR) (24)

+ (Cp + 2CR),(a' , ) = 0

In the above, the subscripts H (haimonic), P (ponderomotive), and R (relativistic) indicate
the origin of the corresponding nonlinear coefficient. These nonlinear coefficients are given
for zero temperature by

2 2
e 2 WCP = P(25b)Cp Mm c2v 2b

9
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2 W 2 -I

CR= P M M+ (25c)
2c4  +

M
If the temperature is finite, the relativistic coefficient remains unchanged, whereas Eqs.
(25a) and (25b) generalize to

e2kM 2W (M
CH 2c 2  K (M_7M_) Im3(W2 - k2C,2) + M 3(W2 - k2 C.2)

+ D M + MM2 (L02 -c,2k2) M2 (4,2 (C,2k2)]}
(25d)

with

D 2  1 W2 rM [ 1 + 1
4 PM~m [m2,~h2) M(W2 - Ck 2 )j

and

C= e2 oM+m) 1

c (M M (MMJ M(V2 - C.2) + M - C.)
(Note that the factor D 2 varies between 3/4 and 1.) In the high-wavenumber limit, all
three coefficients approach constants, whether or not the temperature is finite. In the case
of zero temperature, as k approaches zero, the ponderomotive term dominates, because
the coefficient Cp diverges like k)- 2 ) , whereas the relativistic coefficient CR approaches a
constant and the harmonic coefficient CH vanishes like k2. If the temperature is finite.
the ponderomotive coefficient Cp is singular just above the plasma frequency. (Since the
speed of sound can never exceed 1/V3-c, this critical frequency lies below 3/2 wp).

In the cases of linear and circular polarization, the vector NLS reduces to a scalar
NLS. For circular polarization, we obtain

t2C2
2iwaa + 2 z + 2(Cp + 2CR)a*a 2 = 0 (26)

where we have set d = a- (i + ig). For linear polarization, we obtain

w2c2

2iW,.,a + P- 92-a + (CH + 3CR + Cp)aa 2 = 0 (27)

where now we have taken 6 = a •:i. Thus, modulational instability for these two cases
occurs if the combinations (Cp + 2CR), (CH + 3CR + Cp), respectively are positive [S).

We now consider some special cases:

ELECTRON-POSITIVE ION PLASMA: If the plasma is composed of positive ions and
electrons, then m/M < 1 and we find (for the zero-temperature case)

3e 2 w 4

CH + CR= > 0 (28a)

ewp rmw2 (21)
Cp + 2CR c4m 11 - MC2k2  (28b)

10



Except for frequencies very near the plasma frequency, both polarizations are evidently

modulationally unstable. The corresponding results for finite temperature are:

3e 2w(1 - */3c2h 2 1w)
CH + CR- 24(2 , - 4ch 2  (28c)

e 2 J2 ( Mw(-C/2)wrn W 2

C, + 2C,- ( 1 ) 28d)
c4M MW2(1 -C.2/C 2) - L,

As in the zero-temperature case, both polarizations are modulationally unstable - ex-
cept iur a small frequency range just above the plasma frequency. At finite temperature,
the singularity in the ponderomotive coe,1i7cient near the plasma frequency leads to corre-
sponding singularities for both linear and circular polarization; sufficieatly near the plasma
frequency, the system is modulationlly stable. On the other hand, finite temperature
makes virtually no difference in the behavior of either polarization at moderate to high
frequencies - even though the combination CH + CR can become negative. In all cases,
the contribution of the ponderomotive coefficient is down by O(rn/M) compared to the
others, except near the "lasma frequency. The positive (destabilizing) contribution of the
relativistic coefficient outweighs the negative (stabilizing) contribution of the harmonic
coefficient.

ELECTRON-POSITRON PLi4SMA: Next, let us zonsider an electron-positron plas-
ma, as in Chian and Kennel [1). Setting Al = m in Eqs. (25), we find in the zern-
temperature case

2 W4

CH + CR = 2 2c4w 2 > 0(2)

Cp+2CR=-- -C <0 (29b)

e2W2

CH + 3CR + Cp = 2m2c6k2W2( 2) (29c)

Since CH + 3CR + Cp < 0 and Cp + 2CR < 0, both polarizations are evidently modu-
lationally stable, contrary to the claim of Chian and Kennel (1]. As noted above, their
solution violates the z-component of the face equation at leading order and thus ignores
ponderomotive effects, which (as we saw) are stabilizing for both polarizations. For linear
polarization, the additional stabilizing effect of mode-mode interactions (harmonic effect)
was appafently also neglected.

If the electrons and positrons have finite (but equal) temperatures, we find

e 2' c 2~
CP +v2CR = - (29e)

11



Cp±+3CR + Cl = mP~[~2-ckJ kck ~cw)

- ~[i( (1 ±k+ - C±w'

2 j2 ( - .*cw c./c w" (29)

e ( X +c -/c±/c)W

where cj, is the speed of sound of both components. Due to the singularity in the pon-
deromotive coefficient, modulationxal instability in a electron-positron plasma is possible,
but only in a narrow range just "bove the plasma frequency.

We now briefly discuss astrophysical implications: Recent observ:ational data [14-16]
strongly support the hypothesis that pulsar micropulses are a "temporal" phenomenon and
can be interpreted within the amplitude-modulated noise model [17]. As discussed in [2-5],
nonlinear modulational instability would provide a natural mechanism for amplitude mod-
ulations. Now, according to pulsar models [18-19], the pulsar magnetosphere is composed
of secondary electrons and positrons. However, this paper shows that, in the absense of
an ambient magnetic field, a cold electron-positron plasma does not exhibit modulational
instability for linear or circular p.olarization and that finite temperature affects this result
only just above the plasma frequency. On the other hand, we have found that a cold
electron positive-ion plasma is modulationally unstable for either polarization. So if pulsar
micropulses really are caused by modulational instability, then at least one new~ feature
must enter the problem.

We would like to mention three possible candidates for this new feature and of interst
for pulsar micropulses: First, from our above result on the modulational instability of an
electron-positive ion plasma, one would expect that the inclusion of some positive ions cou
drive the electron-positron plasma modulationally unstable. In a three-component neutrd
plasma consisting of electrons, positrons, and positive ions, we expect that a critical ratk
(positive-ion density)/(positron density) will exist - depending perhaps on parameters such
as the frequency - since the limiting cases (electron-positron, electron-ion) give opposing

results.
The second physical effect would be the presence of ambient magnetic fields, which

could strongly affect the modulational instability of any plasma, in particular an electron-
positron plasma. Careful calculations are required in order to determine how such a mag-
netic field would affect the nonlinear coefficients, keeping in mind that new parametric
interactions can occur due to the presence of the ambient magnetic field. (Such a cal-
culation was proposed in [5], but unfortunately the treatment contains errors, as can be
confirmed for example by comparison of Eq. (7) of [5] with Eq (44) of [20].)

Third, in pulsar magnetospheres, the actual estimated value of the strength parameter 

of Eq. (2) may be of order unity or larger. Under these circumstances, the prcent theory
cannot be applied directly, since higher-order corrections to the nonlinear coefficients found
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here could be important, and at the moment, no a priori method for estimating their
size is available. A fully relativistic scheme allowing arbitrary (slow) modulations of a
zeroth-order solution with large (relativistic) amplitudes would be optimal. However, such
a scheme will contain all the subtleties of the present case together with possibly new
ones. (For example, slowly varying "DC" ponderomotive terms in the longitudinal force
equations will enter two orders in e sooner than in the present calculation.) Now, as we
saw above, the Karpman-Krushkal [61 application of Whitham theory 17) as applied in [1]
and [3-5] unfortunately did not give satisfactory results in the present problem. But we do
note that if the Whitham method could I e extended to include parametric interactions,
then it might well be possible to obtain estimates of nonlinear coefficients even in the fully
relativistic case.

Acknowledgements:

This research was supported in part by the NSF through Grant MCS-8202117 and by
the ONR through grant N00014-88-K-0153.

13



REFERENCES

[1] Chian, A. and Kennel, C: Astrophys. & Sp. Sci. 97, 9 (1983).

[2] Max, C.: Phys. Fluids 16., 1277; ibid. 1480.
[3] Mofiz, et. al. Plasma Physics and Controlled Fusion 26, p 1099.

[4] Mofiz, et al., Phys. Rev. 31, p 951.

[5] Mofiz and Podder, Phys Rev A 36, p1811.
[6] Karpman, V. and Krushkal, E. :1969, Soviet Phys. JETP 28, 277.

[71 Whitham, G. Linear and Nonlinear Waves, Wiley N.Y. 1974.

[8) Manakov, S. :1973, Soy. Phys. JETP 38, 248.

[9] Kates, R. and Kaup, D., to be published.

[10] Kates, R. Ann. Phys. 132, 1 (1981)

[11] Van Dyke, M. Perturbations in Fluid Mechanics, Academic Press, N.Y. 1964.

[12] Nayfeh, A. Introduction to Perturbation Techniques, Wiley, 1981.

[13] Kozlov, V., Litvak, A., and Suvarov, E., Soy. Phys. JETP 49, 1979.

[14] Gil, J: 1986, Astroph. J. 308, 691.

[15] Smirnova, T., et. al.: 1986, Soy. Astron. 30, 51.
[16] Smirnova, 1988, Soy. Astron. Lett. 14, 20.

[17] Rickett, B: 1975, Astrophys. J. 197, 185.

1181 Ruderman M. and Sutherland, P.: 1975, Astrophys. J. 196, 51.
[19] Arons J. and Scharlemann, E.:1979, Astrophys, J. 231, 854.

[20] Luenow, W.:1968, Plasma Phys. 10, 973.

14



SI . i iINS 134

INSTITUTE
FOR

ix NONLINEAR
I\ STUDIES

311

/
II

/ j
/ \ / :

Rona. .E

"" /

• \ /

Influence of an Ambient Magnetic

Field on the Nonlinear Modulational L

Stability of Circularly Polarized
Electromagnetic Pulses in a

Two-Component, Neutral Plasma

Ronald E. lKates*

and

D.J. Kaup

Clarkson University

Potsdam, New York 13676

*Max-Planck-Institut fuer Astrophysik, 8046 Carching, West Germany



INFLUENCE OF AN AMBIENT MAGNETIC FIELD ON THE
NONLINEAR MODULATIONAL STABILITY OF

CIRCULARLY POLARIZED ELECTROMAGNETIC
PULSES IN A TWO-COMPONENT, NEUTRAL PLASMA

Ronald E. Kates
Max-Planck-Institut fuer Astrophysik

8046 Garching
West Germany

D.J. Kaup
Clarkson University
Potsdam, NY 13676

USA

1i



Abstract

This paper extends our previous results [1] on the nonlinear modulational stability
properties of plasma electromagnetic pulsesto include the presence of an ambient mag-
netic field Bo parallel to the direction of propagation., As before, the pulse is assumed
to be strong enough to accelerate particles to weakly, but not fully, relativistic velocities.
The positive component may consist of either positrons or singularly charged ions, and no
specific assumptions or approximations are made concerning the mass ratio of the com-
ponents. (Previous work assumed a positron-electron plasma.) The plasma is assumed
fully ionized. The effects of a finite temperature are included for generality. Using singular
perturbations, we derive'approximate solutions,which describe the evolution of a circularly
polarized pulse. The envelope is shown to evolve over long time scales according to the
cubic nonlinear Schroedinger (NLS) equation. Relativistic corrections and ponderomotive
forces both contribute terms cubic in the amplitude. (In contrast to the case studied in
[1), harmonic effects vanish identically here because of circular polarization.) A positron-
electron plasma without magnetic fields was shown in our previous paper to be modula-
tionally stable, except in the case of finite temperature where modulational instability is
possible near the plasma frequency w,. Here, it is shown that, even for a cold plasma, the
presence of an ambient magnetic field makes a decisive difference: Modulational instability
can arise within a broad range of frequencies and values of B0 , in particular for a pure
positron-electron plasma. For given B0 and polarization, we demonstrate the existence
of critical frequencies for the onset of modulational instability. This result has important
consequences for observations of pulsar micropulses and possible technological applications.
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The possible influence of ambient magnetic fields on the modulational (in)stabilitv of
electromagnetic pulses in weakly relativistic plasmas has taken on new importance with
the recent finding [1] that a cold positron-electron plasma without ambient magnetic fields
is modulationally stable for both linear and circular polarization, contrary to previous
findings [2-5]. However, there is strong recent observational evidence [6-9] that pulsar mi-
crostructure may result from modulations of a coherent pulse. If nonlinear modulational
instability is the cause of micropulses, then some additional element must enter the pic-
ture: e.g., finite temperature, ambient magnetic fields, possible presence of ions, or fully
relativistic amplitudes. As shown in [1], finite temperature can indeed induce modulational
instability for both circular and linear polarization, but the effect is confined to frequen-
cies near the plasma frequency. In this paper, we show that in the presence of an ambient
magnetic field, a circularly polarized pulse propagating parallel to the magnetic field in a
cold plasma can go modulationally unstable under a range of conditions.

A previous attempt [5] to determine conditions for soliton solutions in a strongly
magnetized plasma began from a linear solution which unfortunately contained errors, as
pointed out in [1]. These errors were partially corrected in [10]. However, the results
apply only to the special case of a single-soliton solution. Correct formulas for the linear
theory can be found in [11-12]. As applied in [2-5], the formulas given by Karpman and
Krushkal [13] (based on Whitham theory [14]) resulted in expressions which do not satisfy
the Maxwell equations and the Lorentz force law, and the nonlinear coefficients of the NLS
equation were as a result incorrect.

For these reasons, we have applied the singular pertirba+'on '-ethod ("two-tim;ng")
used in [1] fo: the purpose of accurately evaluating the nonlinear coefficnets. (For economy,
we refer the reader to the explpnations given there.) Since the physical size of a term is
explicitly taken into account in assigning orders of smallness, the method contains internal
checks which do riot allow one to "lose" terms. We have employed the computer algebra
system MUMATH to verify that all equations are indeed satisfied at the orders claimed.
(The two-timing techniques of [1] were automated by rewriting the usual differentiation
routines.) References to equation numbers from [1] in the following will be preceeded by
Roman numeral I.

Following [1], our model comprises a singly ionized, positively charged species of mass
M and a negatively charged species of mass m, hereafter refered to as the ions and electrons,
respectively. (However, since no approximation is made at this stage with respect to
m/M, all formulas will be equally valid for an electron-positron plasma upon substituting
M =m.)

The fluid is characterized as in [1] by the electron density n, the electron velocity 6i,
the ion density N, the ion velocity V the vector potential A and the electrostatic potential
0. The function n, 6, N, V, and 0 as well as the perturbed part of the vector potential
A are assumed to depend on t and z, but not on x and y. The unperturbed part of A
describes a uniform magnetic field in the z-direction and thus of course depends linearly
on x and y.)
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In addition to the plasma frequency, given by

= 47re2n(i-t -  ) (1)

we define the electron-cyclotron frequency

w- = eBo/(mc) (2a)

and the ion-cyclotron frequency

W+= eIBoI/(Mc) (2b)

where c is the speed of light. (The two cyclotron frequencies obviously coincide in the case
of an electron-positron plasma.)

As in [1], we suppose that the transverse electric field E1 of the electromagnetic pulse
satisfies

etElI/(mc) = 0(c), (3)

where e is a dimensionless small parameter and e << 1. As a consequence, the relativistic
factors -f and r (defined below) differ from unity by 0(c 2 ).

It is convenient to express the continuity and Euler equations for the electrons in the
form

tfn + V. (n6) = 0 (4a)

d(myi - -eA _ eV + mc, 2 -Vn + - E3=v 1VA, = 0 (4b)
C n C

where
d = D, + 6.V (4c)

= (1 - v2/C2 )- 1/ 2  (4d)

and c, is the electron thermal speed. For the ions, the respective equations are

aN + V . (NV) = 0 (5a)

D(MFrV + + + MC VN - c VVA, = 0 (5b)

where
D = +V.V (5c)

r = (1 - V2/C2) - 1 / 2  (5d)

and C, is the ion thermal speed. Of course, Maxwell's equations

VXB= (NV-n) + - al (6a)
C c

. = 47re(N - n) (6b)
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must hold, where we take

B V XA (6c)

E=16 Oa (6d)
C

and where we impose the radiation gauge

.A =0 (6e)

An exact static solution of the system (4-6) is given by

n = N = no (7a)

6=0 (7b)

=o (7c)

€ =0 (7d)

A= Ao = (-yBo/2, xBo/2,0) (7e)

which contains a constant magnetic field in the z direction. Quantities with subscript 0
are strictly constant.

Following [1], we assume asymptotic expansions of the form

n = no + En, + C2n2 + 3n3 +... (8a)

A= Ao + ef, + E2 +C A3 +... (Sb)
N =no + EN1 + E2 N 2 + EsNs3 + ... (8c)

f = + C + fV3 +... (8d)

EO + E22 + E3 t +... (8f)

where A0 is given by (7e).

It is instructive to review briefly properties of the solutions of the linearized system
obtained by simply truncating Lqs. (4-6) at O(e). (The linearized theory of circularly-
polarized electromagnetic-wave propagation parallel to an ambient magnetic field can be
found in [12].) A typical Fourier component of the vector potential perturbation behaves
in this linearized theory like d(w)e i(kz - ' ), where

a= a. (; + i ). (9)

The dispersion relation for right-hand circular polarization is

W = 4re2no/(mV) + 47re 2 no/(.AIr) + k2c2  (10)
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where

v= 1 - eBol(mcw) = 1 - w_/W (11a)

y 1 + eBo/(Mcw) = 1 + w+/w (11b)

The dispersion relation for left-hand circular polarization can be obtained from (11) by
substituting for v and p expressions in which B0 is replaced by -B 0 .

If the masses are unequal, then four electromagnetic branches can be distinguished.
If the masses are equal (electron-positron plasma), then two branches are present. The
requirements k 2 > 0 and W2 > 0 will in general place restrictions on the allowable frequen-
cies of a propagating electromagnetic wave. Unlike the unmagnetized case, propagation
can occur below the plasma frequency. In the linear theory it is of course also possible
to consider the evolution of initial data corresponding to "linear" polarization; evidently
Faraday rotation of the polarization will occur.

In addition to the electromagnetic modes, there are also longitudinal Langmuir oscil-
lations at the plasma frequency. In the linearized theory, these are of course decoupled
from electromagnetic waves. However, in the modulated nonlinear theory we shall see that
the ponderomotive force induces coupling between transverse and longitudinal modes.

Following the procedure of [1], we now assume that the first-order perturbation of the
vector potential and electron density take the form

A1 = i( kz - ) + c.c. (12)
a a. (.i + i ) (13)

nj = 0, (14)

where "c.c." indicates the complex conjugate, and where the wave number k and the fre-
quency w correspond to nonsingular solutions of the dispersion relation (10). In particular
we assume that w is quite distinct from the electron-cyclotron frequency and also the ion-
cyclotron frequency. (In fact, we exclude a small range of 0(c) around these frequencies).
The function a is not strictly constant, but depends on the slow variables

Z=Cz, T=tl T, -E 2 t (15)

This choice of the form of the first-order perturbation places restrictions on the class of
initial conditions described by our treatment: The initial conditions correspond to a right-
hand circularly polarized pulse propagating in the positive z direction. (Results for the
opposite polarization can be recovered by replacing B0 with -B 0 at the end.)

As in [1], in first order, the longitudinal components are identically zero or can be
chosen to vanish without loss of generality. The transverse components can be treated as
a coupled linear homogeneous system of the form

L(;b,) = 0 (16)
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The solution can be expressed in the form

01 = 0 = ni = N1 = A1 = vi. = Vi. (17a)

i3* = ei(kZ-W)ed/(mcv) + c.c. (17b)

V1 = - + c.c. (I7c)

The notation i1 means the the 0(f) part of 6, and so forth. The dispersion relation (10) of
the (truncated) linearized theory must also hold. The fir-order part of (6b) guarantees
quasineutrality at first order. The z-component of (6a) is then satisfied at first order
automatically.

We now refer the reader to Eqs. (I.15)-(I.18) and discussion. As before, the second-
order parts of the transverse equations - together with the condition for no secular terms
- restrict the slow dependence of a. One finds explicitly that the amplitude is transported
according to

(&T-r v9z) a =0 (1o)

at the group velocity
Vg = dw/dk (18b)

where weekc 2 / 2ire3noB 0  2 -I

Vg = '2 1 + 3 [1/(m2/- (18c)

where v and ' were defined in Eq. (11). Note that the product of group and phase velocity
is not c2. We now examine the next leading order in the remaining equations. These consist
of third order in the longitudinal parts of the Euler equations (4b,5b), second order in the
continuity equations (4a,5a), second order in Poisson's equation (6b), and second order
in the transverse Euler equations (4b,5b). (The longitudinal part of (6a) is then satisfied
automatically.)

WNe recall that in [1], the second-order solution contained three types of terms classified
according to their phase dependence as "DC," "fundamental," and "harmonic." All three
types of terms contributed effects of comparable magnitude, in the general case. However,
harmonic terms vanished in the special case of circular polarization. The same is true here,
even though a magnetic field is present. On the other hand, ponderomotive forces arise in
the longitudinal equations and induce DC corrections as before.

The second-order equations form a linear inhomogeneous system, and thus given any
particular second-order solution one can find another particular solution (corresponding
to different initial data, of course) by the addition of an arbitrary homogeneous solutions
of the form (16).

A2 =0, (19)

we obtain for the DC part

n2 = aa*noa (20a)
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N2 = n2 (20b)
V2z = vaa a (20c)

V2 = V aa , (204)

02 = aa*E (206)

where
e2 (w 2 + c2 k2 - 2kvgw) (21)

c2 w2mMv 2 F

ec2 CF)) [1 +- Cg) [1 kvrw - c') [1 kvgQc

g 1W/I L(22)

rnc, + MC,2

F = 1 -g 2 + M) (23)Vg (M + m)

Note that F contains the corrections due to finite temperature. Also note that longi-
tudinal perturbations are forced by the modulations in a. As in [1], charge quasi-neutrality
at second order still holds. However, in contrast to [1] the second-order transverse velocity
corrections are nonvanishing. These are

U2= -J-e (kz-Wf) e2 BoOTd/(m 2 Lw2 V2) + c.c. (24a)
f72± = _ii(kz-Wt) e2 8 /( 2  22) + C.c. (24b)

We now proceed to third order. Choosing the initial conditions as above to exclude
homogeneous Langmuir oscillations and again absorbing A3 into the first order, we solve
the transverse parts of the Euler equations (4b,5b) to obtain the particular solution

I.= 3 s(kz W(i + iY)s 3 + C.Cl (25c)
f!3= ' (kz-"ti + i)S 3 + c.c. (25b)

where S3 is given by

83 = - iewOa/(mc"?v2 ) - ew0- -a/(rc,,? v 3 )

+ ekvL .a 2 ao/(m., 2z1) - 2 3 al*/( v 4 ) (26)

An expression for S3 can be obtained from S3 by replacing rn with M, v with P, U._ with
w+, and e with -e. The last term in (26) is the relativistic correction and except for the
corresponding term in S3, it is the only relativistic correction. The other nonlinear term
in (26) is a ponderomotive-like term arising from the second-order shift in the longitudinal
velocity, V2.
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The longitudinal equations at the next leading order give information about the third-
order density and potential corrections. However, we already have all the information
necessary to evaluate the secular condition implied by the transverse components of the
Maxwell equation (6a). The linear terms are cornsistent with what would have been ob-
tained by the Karpman-Krushkal [13] approach. In particular, the coefficient of ara can
be shown to be equal to 2kc 2/v,, The dispersion terms (second derivatives in T and/or Z)
can be collected together by means of (18a) into a coefficient times 902a. This coefficient
turns out to be kc 2 Wkk/t'g, where Wkk is called the dispersion and is the second derivative
of w with respect to k. To be sure, considerable algebra is required in order to obtain the
final result. However, there are some "miraculous cancellations" and things do simplify
toward the end. After division by some common factors, we finally arrive at an equation
of the form

2iwOa + wwkk aza + a2a*(Cp + 2CR) = 0 (27)

where the nonlinear coefficient CR contains the effects of the relativistic corrections, while
the nonlinear coefficient Cp contains the ponderomotive effects. The latter arises from
two sources. First there is the shift in the second-order longintudinal velocity mentioned
above. This term did not occur in the zero-magnetic-field case [1]. The other source is
the second-order shift in the density which did occur in the zero-magnetic-field case [1].
Finally, note that no terms of the type refered to in [1] as "harmonic" occur here (such
terms would be expected for generic polarization).

The sum of the two ponderomotive terms is given simply by

C p - (2 k,,:vg - - c2k2 )2  (2Sac)

The relativistic coefficient is giver, explicitly by

C 2 = )wM 2 M2 W , [1/(mv4) + 1/(. 3 pA)] (2SbCR=c4Af rn )22 k (.A + m)

We note that the coefficients Cp and CR reduce to the corresponding formulas (I.251-c) if
B0 vanishes.

The condition for modulational instability is

Wukk(Cp + 2CR) < 0 (29)

It is remarkable that CR can in fact be reduced to a functional of the linear disperi,-io,'
relation alone. One can show that (28b) is equivalent to

R r2 W1Vg [1 3 (C2k 2) _ I + 2 32)l
c Mm 2c2 kw..w+ + 2

where k is regarded here as an implicit function to be obtained by solving the distpiri'O
relation for k in terms of w. The practi,,j --vntage of (30) (tfetlier with (2Sa)) is that it
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reduces the problem of evaluating the NLS coefficents to formulas involving only the linear
dispersion relation. Given c2 k 2(w), one may now evaluate all of the NLS coefficients. Thus
the problem of calculating the nonlinear coefficents is simply a problem in evaluating v,
and '(c 2 k2). These expressions could be useful in obtaining clues to the corresponding
result for arbitrary polarization.

We examine the electron-positron case in detail. In this case, the dispersion relation
(10) reduces to

c 2 k 2 = W2 1 - Q2] (31)

where Q is now the common cyclotron frequency. The group velocity is found to be

va = 2,02 (32)
1+ (,2_Q2)7

and the nonlinear coefficients are

e2a W %S 8w 222
CR = ( 2  2kc 2(w2  1 + w2 Q2)2  (33a)

e~~ ~ 2 p2 )V92 .Q22Q 2 2
CPWWvg 1+ 2 (33b)

(- 4M2 k3 c 4(W2 - 2 )2F w2 -Q2 (w2 - Q2)2

while the dispersion is

v3w 2 wp 5 2  (42 - 3w') 2Q4

c4 k3 (w2 - Q2) + _L2 ) (W2_-Q )2 (w2  Q2 )3 I *

In the limit of large !Q2 /W, which is certainly a good approximation for the pulsar envi-
ronment, one obtains from the above, for k/w > 0,

w2

c(1 - P2 +'") (35a)2Ql2

3wwL
2 c2

Wkk= +... (35b)

CR e 2 2cw 10 + 2 + (35c)

(e 2  2kc'wf24 Q 2+w

Cp = e- C-2) w 2 wkcSg 1 6+ + (35c)

2 +C

20 + (35c)
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Note that (35b) gives wk&kw < 0. In the limit of Bo - 0, we have the opposite
result of wkkw > 0. Recall that in I, it was positive nonlinear coefficients which led to
modulational instability; here it will be negative nonlinear coefficients which will give rise
to modulational instability.

As long as the sound speeds are much smaller than the group velocity of the electro-
magnetic wave, (which 1i usually the case for nonrelativistic gas temperatures) F is close
to unity. (However, the A and FMS branches (12] of the dispersion relation have van-
ishing group velocity near the cyclotron frequencies, and therefore for finite temperature
sufficiently near these frequencies F may become significantly different from unity.) Using
Eqs. (35), we find

e2 w w4  4w 2-WU c4+C.2 +" (36)Cp+2n= 2Q 4 D2 - 2C2

Now we can have modulational instability, see (29), only if

S<1 +± 2 cs+ (37)
4 W 2c 2

For large Q2, we see that there is a very wide frequency range for even moderate
temperatures. And even for a cold plasma, modulational instability occurs also if w2 <
1 2

According to pulsar models [15,16], the pulsar magnetosphere is composed of sec-
ondary electrons and positrons, and strong magnetic fields (1012 Gauss) are present, cor-
responding to an electron plasma frequency of the order 1019 Hz, as compared to a plasma
frequency of a few Megahertz. If we apply the statistical model of Rickett [17], as described
in [2], a modulationally unstable pulse could be responsible for the micropulse structure
observed in [18].

Unfortunately, one cannot yet make any definitive predictions for the problem of
micropulses. First, one would expect that the propagation angle will in general not be
parallel to the magnetic field. Second, the polarization may not necessarily be circular.
Third, the pulses may well be fully relativistic. Still, based on the present calculation,
one would expect that a range of frequencies for modulational instability should exist
even when the propagation angle is not parallel to the magnetic field, and even when the
polarization is elliptic. (Perhaps the observed mixed polarizations result from averaging
due for example to insufficiently fine time resolution.) Consideration of fully relativistic
effects will have to await the results of further work.

Our paper predicts a definite frequency range for instability; for the case of a positron-
electron plasma, the frequency range is given directly in Eq. (37). For the more general
case, the frequency range can easily be obtained from Eqs. (28) and (29), together with
the dispersion relation (10).
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A further result of our calculation is a prescription for obtaining the nonlinear coeffi-
cients directly from the linear dispersion relation, as in Eqs. (30) and (28a) above. Note
that these two equations, although obtained for a two component plasma, have an obvi-
ous ,tneralization for a plasma containing any number of components. Thus, given an
N-component neutral plasma and a linear dispersion relation, one can directly obtain the
coefficients of nonlinearity in the case of circular polarization. This is in the spirit of the
Karpman-Krushkal (13] method, which Refs. [2-5] and [10] attempted to apply.
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